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Recently there has been a strong interest in the area of defect formation in ordered structures on curved
surfaces. Here we explore the closely related topic of self-assembly in thin block copolymer melt films
confined to the surface of a sphere. Our study is based on a self-consistent field theory �SCFT� model of block
copolymers that is numerically simulated by spectral collocation with a spherical harmonic basis and an
extension of the Rasmussen-Kalosakas operator splitting algorithm �J. Polym. Sci. Part B: Polym. Phys. 40,
1777 �2002��. In this model, we assume that the composition of the thin block copolymer film varies only in
longitude and colatitude and is constant in the radial direction. Using this approach we are able to study the
formation of defects in the lamellar and cylindrical phases, and their dependence on sphere radius. Specifically,
we compute ground-state �i.e., lowest-energy� configurations on the sphere for both the cylindrical and lamellar
phases. Grain boundary scars are also observed in our simulations of the cylindrical phase when the sphere
radius surpasses a threshold value Rc�5d, where d is the natural lattice spacing of the cylindrical phase, which
is consistent with theoretical predictions �Bowick et al., Phys. Rev. B 62, 8738 �2000�; Bausch et al., Science
299, 1716 �2003��. A strong segregation limit approximate free energy is also presented, along with simple
microdomain packing arguments, to shed light on the observed SCFT simulation results.
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I. INTRODUCTION

Over 100 years ago, just before the formulation of quan-
tum mechanics, Thomson �1� investigated the problem of
arranging classical electrons on the surface of a sphere in
order to explain the structure of the periodic table. Construct-
ing the ground state of crystalline packings of particles on a
sphere has turned out to be a much more involved problem
and, even a century later, still captures the interest of many
research groups. A vast number of systems have been inves-
tigated theoretically and experimentally.

The problem of constructing the ground state of classical
electrons confined on a sphere has since been generalized to
a number of different potentials and topologies. A wide va-
riety of experimental realizations of the problem has since
been discovered, and this has expanded the interest in fully
understanding the influence of topology on particle arrange-
ment. The interest spans biology, covering virus and radi-
olaria architecture �2,3�, flower pollen as in the morning
glory, cytoplasmic acidification on a clathrin lattice morphol-
ogy �4,5�, colloid encapsulation for possible drug delivery,
like the colloidosome �6,7�, and, coming back to the original
question of the Thomson problem, is realized as multielec-
tron bubbles on the surface of liquid helium �8�.

Theoretically, the field of lattices constrained on surfaces
of constant curvature has been covered and explored exten-
sively. The main focus remains not only on spherical geom-

etry, with the advantage of experimental relevance and well-
described parameters �9–15�, but also on more abstract
surfaces of constant negative curvature �16�. The problem of
identifying the ground state at zero temperature has proven
to be very challenging for large numbers of particles on a
sphere and is still under investigation. The major complica-
tion, from an analytical as well as from a simulation stand-
point, is the vast number of states with very small differences
in energy.

The number of faces F, edges E, and vertices V of a
covering of a closed surface by polygons are related through
the Euler-Poincaré formula

�E = F − E + V , �1�

where �E is the Euler-Poincaré characteristic. By evaluating
Eq. �1� under the assumption that only three edges intersect
at each vertex, we can obtain an expression relating the to-
pology of a compact, orientable surface without boundary to
a sum over coordination number in an embedded particle
configuration via the Euler characteristic

1

6�
z

�6 − z�Nz = �E, �2�

where Nz is the number of polygons with z sides �i.e., z
nearest neighbors� on the surface �17,18�. This simplifying
assumption of only three edges intersecting at each vertex
has been observed to be true in particle based models such as
the Thomson problem and in our results. The derivation of
Eq. �2� from Eq. �1� can be found in Appendix A. Equation
�2� can be used to determine the minimum number of defects
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required due to topology. For example, if we look at a
sphere, which has an Euler-Poincaré characteristic �E=2, Eq.
�2� tells us that a large sphere covered with a particle lattice
containing many more than 12 particles, and only five-, six-,
and seven-fold coordinated sites, will exhibit 12 more five-
fold than sevenfold sites due to the topology of the underly-
ing manifold. In the ground state, the excess fivefold discli-
nations are positioned at the vertices of a regular
icosahedron. We define a disclination as a lattice site with
coordination other than six �more rigorous and extensible
definitions of disclinations in terms of singularities in vector
fields can be found in standard texts on liquid crystals and
condensed matter physics, e.g., �19–21��.

In flat space, isolated disclinations are energetically ex-
pensive as their energy grows with the size of the system
squared: Edisclination�R2, where R is the radius of the system.
The main contribution to the potential energy comes from
the elastic stretching of the lattice, in addition to the core
energy of the disclination. Isolated disclinations are, there-
fore, never observed for larger systems in the ground state on
a flat surface. However, in curved space, disclinations are
required in order to screen the Gaussian curvature. This tran-
sition from curved space to flat space can be observed by
increasing the ratio R /d of sphere radius R to lattice constant
d. The potential energy of the disclinations increases due to
the decrease in local Gaussian curvature. Above a critical
ratio Rc /d the ground state contains grain boundaries at-
tached to the 12 disclinations in order to screen the strain in
the lattice from each disclination �6,9,13,14�. The critical ra-
tio is a balance between the decrease in strain energy of the
lattice caused by incorporating the grain boundaries and the
energy required to create a grain boundary plus the core en-
ergies of the defects involved in the grain boundary.

For the lamellar phase, the topology of the sphere en-
forces a similar requirement on the defect structure. In this
phase, we have observed four relevant lamellar defect struc-
tures, two different line and point defects. Each type of de-
fect is assigned a defect charge m whose values can be either
− 1

2 �line�, + 1
2 �line�, +1 �point�, or −1 �point� depending on

their molecular arrangement and type �19�. When the lamel-
lar phase �or equivalently, a vector field—in this case the
layer normal or director field� is realized on a closed surface,
topological constraints require that the following equation be
satisfied �22,23�:

�
i

mi = �E, �3�

where mi is the charge of the ith defect, �E is the Euler-
Poincaré characteristic, and the sum is over all defects on the
surface. Again, for the sphere, �E=2, and thus the total sum
of defect charges on this surface is also equal to two.

For a nematic liquid crystal phase on the sphere, the
ground state has been determined to consist of four + 1

2 de-
fects �24,25�. Less work has been performed for a smectic-A
liquid crystal phase on a sphere, which is analogous to the
lamellar phase of block copolymers. Blanc and Kleman �22�
identified the two simplest configurations of smectic-A de-
fects on a sphere, which consists of two +1 defects at the

poles, or four + 1
2 defects confined to a great circle, equally

spaced 90° apart.
Ordered structures and defect formation on nonuniform

curved surfaces are also of keen scientific interest. Experi-
mental studies have examined lipid bilayers �26�, Langmuir
films, wrinkled surfaces �27�, liquid crystal thin films, and
block copolymer thin films. A theoretical study of such a
system has been presented by Vitelli et al. �28–30�, which
explored various aspects of a hexagonal lattice confined to a
surface with a single isolated Gaussian bump.

A viable system to experimentally study the relationship
between curvature and defect formation in block copolymers
�BCPs� is a thin copolymer film on a SiO2 patterned sub-
strate �29�. Numerically simulating such a system with non-
uniform curvature, however, is computationally demanding.
Nonetheless, much can be learned from the spherical geom-
etry, which is the simplest example of a curved surface with
positive Gaussian curvature. Lamellar and hexagonal pat-
terns on the surface of a sphere have already been seen
through the use of Turing equations, which describe a ge-
neric reaction-diffusion model for the concentration of sev-
eral reacting species �3�. Numerical studies of nongrafted
block copolymers on spherical surfaces have been limited to
studies by Tang et al. �31� and Li et al. �32�. Tang et al. used
a phenomenological model of block copolymer phase sepa-
ration with Cahn-Hilliard dynamics. This model was adapted
for the geometry of a sphere and solved through a finite
volume method. A limitation of this phenomenological ap-
proach is that the role of architectural variations of the block
copolymer and formulation changes �e.g., blending with ho-
mopolymer� cannot be explored. Li et al., on the other hand,
adapted a full self-consistent field theory �SCFT� treatment
of block copolymers to thin films confined on a sphere. A
spherical alternation-direction implicit scheme was used to
solve the diffusion equation through a finite volume method.
While the primary focus of this study was on the numerical
methods used to solve the SCFT equations, some insights
were provided into the self-assembly behavior of lamellar
and cylindrical diblock microphases on a sphere �along with
a brief discussion of ABC triblock copolymers�. In a recent
article, Roan �33� studied the related system of a grafted
homopolymer blend on the surface of a sphere by a similar
numerical SCFT formalism. The quenched surface grafting
constraints in the homopolymer blend model, however, make
this system fundamentally different from the block copoly-
mer films studied here.

In this investigation, we apply numerical SCFT to study
the self-assembly behavior of a thin diblock copolymer melt
film confined to the surface of a sphere. SCFT uses a saddle-
point �mean-field� approximation to evaluate the functional
integrals that appear in a statistical field theory models of
inhomogeneous polymers �for a detailed discussion, see
�34–36��. Although SCFT is one of the most well-established
and successful tools for modeling diblock copolymer melt
films in flat space �37,38�, aside from the Li et al. �32� study
mentioned above, it has not been routinely implemented in
curved geometries. The primary difficulty in extending the
standard SCFT framework to a spherical surface is in the
numerical solution of the modified diffusion equation �dis-
cussed below�. While Li et al. �32� and Roan �33� applied
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finite volume and finite difference methods, respectively, to
the SCFT equations in spherical coordinates, we have devel-
oped a spectral collocation �pseudospectral� approach �39�
that offers higher numerical accuracy and efficiency. Specifi-
cally, we present a pseudospectral �PSS� algorithm with a
spherical harmonic basis for solving the modified diffusion
equation and associated SCFT equations on the surface of a
sphere. Efficient discrete spherical harmonic transforms are
enabled by the SPHEREPACK 3.1 routines developed by the
atmospheric modeling community �40�. Our PSS algorithm
for spherical films is an extension of the PSS algorithm al-
ready in widespread use in flat space SCFT studies �36,41�.

Beyond developing an improved numerical method for
solving the SCFT equations in spherical geometries, we re-
port in the present paper on detailed numerical simulations of
both lamellar and hexagonal ordering of a spherical thin film
of diblock copolymer. We investigate the energies of com-
peting defect structures as a function of sphere radius R and
compare the simulated ground-state structures to those pre-
dicted by analytical studies of smectics and simple hexago-
nal lattices. In order to gain further insight into the SCFT
simulation results, we develop an approximate analytical free
energy expression for the BCP cylindrical �hexagonal� phase
on a sphere. This approximate solution, which is based on
the strong segregation limit �SSL� �42�, shows striking quali-
tative agreement with our SCFT simulations, and helps to
provide physical insights into the observed microdomain or-
dering on a sphere. For the lamellar phase, we examine par-
allels with the classic elastic theory of smectic and nematic
liquid crystals, coupled with microdomain packing argu-
ments, in order to draw conclusions about the observed de-
fect structures in the SCFT simulations.

II. MODEL AND SCFT

Our implementation of SCFT on a sphere is built on a
standard field theory model for an incompressible AB
diblock copolymer melt �35,43�. Here we provide a review
of the basic Gaussian polymer model with a Flory-type
monomer-monomer interaction. We also provide a short syn-
opsis of the mean-field approximation, SCFT, and relaxation
methods to obtain numerical SCFT solutions.

A. Block copolymer model

We consider nd monodisperse AB diblock copolymers in a
volume V. The volume fraction of A segments along the
polymer is denoted f , and the index of polymerization is
denoted N. We assume that the statistical segment lengths
and segment volumes of the two polymers are equal, i.e.,
bA=bB=b and �A=�B=�0. The unperturbed radius of gyra-
tion of a copolymer is given by Rg0=b�N /6. With the in-
compressible melt assumption, the average segment density
is uniform in space and given by �0=1/�0=ndN /V. Each
block copolymer is modeled as a continuous Gaussian chain
described by a space curve r��s�, where �=1,2 , . . . ,nd is the
polymer index, and s� �0,1� is a polymer contour length
variable �s=0 at the beginning of the A block, and s=1 at the
end of the B block�. The canonical partition function is given

by a functional integral over all chain configurations �we set
kBT=1�:

Z =� 	

�=1

nd

Dr�����̂A + �̂B − �0�exp�− U0 − UI� , �4�

where U0 is the Gaussian chain stretching energy,

U0 =
1

4Rg0
2 �

�=1

nd �
0

1

ds�dr��s�
ds

�2

, �5�

and UI captures the Flory segment-segment interaction,

UI =
�

�0
�

V

dr �̂A�r��̂B�r� . �6�

Here �=�AB is the A-B Flory interaction parameter. The mi-
croscopic A and B segment densities are given by the usual
expressions:

�̂A�r� = N�
�=1

nd �
0

f

ds �„r − r��s�… , �7�

�̂B�r� = N�
�=1

nd �
f

1

ds �„r − r��s�… . �8�

In the partition function Eq. �4�, ���̂A+ �̂B−�0� is a delta
functional that enforces the incompressibility constraint of
the melt, �̂A�r�+ �̂B�r�=�0 at all points r.

At this point, the standard procedure is to decouple the
many-body interaction implicit in Eq. �6� and the incom-
pressibility constraint by transforming the system into a field
theory via a Hubbard-Stratonovich transformation. The de-
tails of this transformation can be found elsewhere �e.g., see
�36��. After the transformation, the partition function be-
comes

Z =� DW+DW− exp�− H�W+,W−�� , �9�

where

H�W+,W−� = C�
V

dx�− iW+�x� + �2f − 1�W−�x� + W−
2�x�/�N�

− CV ln Q�iW+ − W−,iW+ + W−� . �10�

We have introduced the dimensionless spatial coordinate x
=r /Rg0 and the dimensionless chain concentration C
=�0Rg0

3 /N. All lengths are expressed in units of Rg0. The
Hubbard-Stratonovich fields W+ and W− couple to the pres-
sure and the AB composition of the BCP melt, respectively.

In Eq. �10�, Q is the partition function for a single AB
diblock copolymer interacting with an external field. We can
see that the A segments interact with the field WA= iW+
−W− and the B segments interact with the field WB= iW+
+W−. Q is calculated using the forward propagator,
q�x ,1 ; �WA ,WB��:
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Q�WA,WB� =
1

V
�

V

dx q�x,1;�WA,WB�� . �11�

The forward propagator q�x ,1 ; �WA ,WB�� gives the probabil-
ity density of finding a polymer whose free B block end
terminates at position x. The forward propagator satisfies a
modified diffusion equation:

�

�s
q�x,s� = �2q�x,s� − ��x,s�q�x,s� , �12�

where

��x,s� = 
iW+�x� − W−�x� , 0 	 s 	 f

iW+�x� + W−�x� , f 	 s 	 1,
� �13�

and q�x ,s� is subject to the initial condition q�x ,0�=1.
The local volume fractions of A and B segments can be

computed as follows:


A�x;�WA,WB�� =
1

Q�0

f

ds q�x,s�q†�x,1 − s� , �14�


B�x;�WA,WB�� =
1

Q�f

1

ds q�x,s�q†�x,1 − s� , �15�

where q†�x ,s� is the backward propagator. The backward
propagator satisfies a modified diffusion equation analogous
to Eq. �12� �for details, see �43��.

Up to this point we have not made specific mention of the
shape of the domain containing the block copolymer melt. In
this study, we are interested in a copolymer thin film con-
fined to the surface of a sphere of radius R �where, as men-
tioned above, all lengths are expressed in units of Rg0�. We
assume that the system is uniform but finite in the radial
direction so that densities and potential fields have no radial
dependence. The film thickness is denoted by h and we as-
sume thin films satisfying h�R. Imposing spherical coordi-
nates with fixed radius r=R:

x = �x,y,z� → u = �
,�� �16�

with

x = R cos 
 sin � , y = R sin 
 sin � , z = R cos � .

�17�

As is conventional, 
� �0,2
� denotes longitude, and �
� �0,
� denotes colatitude.

In these coordinates, integrals over the system space V
can be split into two factors: �1� a constant factor corre-
sponding to the radial integral, and �2� an integral over u.
This gives an integration measure

dx = R2h du , �18�

where

du = sin � d� d
 . �19�

Thus,

�
S2

du = �
0

2


d
�
0




sin � d� = 4
 �20�

and

V = �
V

dx = R2h�
S2

du = 4
R2h . �21�

Furthermore, the Laplacian is given by

�2 =
1

R2�u
2 , �22�

where �u
2 is the 2D Laplacian on the surface of a unit sphere,

�u
2 =

1

sin2 �

�2

�
2 +
cos �

sin �

�

��
+

�2

��2 . �23�

B. Self-consistent field theory

Implementing the exact field theory model outlined in
Sec. II A is nontrivial due to the complex nature of the func-
tional integral exhibited in the partition function, Eq. �9�. In
order to simplify our model we will use an analytic approxi-
mation technique called self-consistent field theory, which
ignores field fluctuations and assumes that the functional in-
tegral is dominated by a single field configuration. This
method is exact when the dimensionless chain concentration
C approaches infinity, and in the case of high molecular
weight block copolymer melts, where C can very large, this
method has been found to be quite accurate �36,43�.

We now discuss the method of determining mean-field
configurations of W±. In Eq. �10�, we see that there is an
overall multiplicative factor of C. Therefore, in the C→�
limit, we can use the method of steepest descent to validate
examination of saddle-point solutions of Eqs. �9� and �10�.
The saddle-point solutions represent mean-field configura-
tions of W± �36�. The saddle-point equations are given by the
expressions:

��H�W+,W−�
�W±�u�

�
W̃±

= 0, �24�

where W̃± are defined as the saddle-point configurations of
the fields W±.

Equation �24� represents four equations, one equation
each for the real and imaginary parts of the complex fields

W̃±; however, the saddle-point configuration of W+ is strictly
imaginary and the saddle-point configuration of W− is strictly
real �43�. Accordingly, we define a real-valued pressure field

�= iW̃+=−Im�W̃+� and a real-valued exchange or composi-

tion field W=W̃−=Re�W̃−�. We use Eq. �10� to evaluate Eq.
�24�. This gives the following real saddle point equations,
which constitute the mean-field equations of SCFT:

�H��,W�
���u�

= C�
A�u� + 
B�u� − 1� = 0 �25�

and
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�H��,W�
�W�u�

= C��2f − 1� + 2W�u�/�N − 
A�u� + 
B�u�� = 0.

�26�

Previous research has shown that a continuous steepest
descent search is one of the simplest and most efficient ways
to solve the SCFT equations �36�. We introduce a fictitious
time variable t, and at each time step we advance the field
values in the direction of the field-gradient of the Hamil-
tonian. The saddle point search is a “steepest ascent” in �

because the saddle-point value W̃+=−i� is strictly imagi-
nary. The saddle-point search is formally given by

�

�t
��u,t� =

�H��,W�
���u,t�

, �27�

�

�t
W�u,t� = −

�H��,W�
�W�u,t�

. �28�

Clearly, Eqs. �25� and �26� are satisfied when Eqs. �27� and
�28� are stationary.

This completes the standard framework for SCFT. We re-
lax toward mean-field configurations of W± by iterating the
following scheme.

�1� Initialize the potential fields ��u ,0� and W�u ,0�.
�2� Solve the modified diffusion equations for q�x ,s� and

q†�x ,s�.
�3� Calculate Q, 
A, and 
B using Eqs. �11�, �14�, and

�15�.
�4� Update ��u , t� and W�u , t� by integrating Eqs. �27�

and �28� forward over a time interval �t.
�5� Repeat steps 2–5 until a convergence criterion has

been met.

C. Modified diffusion equation

In the SCFT scheme outlined above, the most costly step
is solving the modified diffusion equations—step 2. In flat
Euclidian space, specifically a parallelepiped computational
cell with periodic boundary conditions, an attractive way to
solve the modified diffusion equations is the pseudospectral
operator splitting method of Rasmussen and Kalosakas
�36,41�. This is an unconditionally stable, fast, O��s2� accu-
rate algorithm for solving the modified diffusion equations.
In Eq. �12� we identify the linear operator L=�2−��x ,s�.
Formally, one can calculate q�x ,s� at a set of discrete con-
tour points s by propagating forward along the polymer chain
according to

q�x,s + �s� = e�sLq�x,s� , �29�

starting from the initial condition q�x ,0�=1.
The Rasmussen-Kalosakas algorithm is based on the

Baker-Campbell-Hausdorff identity �44� which affects an
O��s2� splitting of e�sL:

e�sL = e−�s��x,s�/2e�s�2
e−�s��x,s�/2 + O��s3� . �30�

In a parallelepiped geometry with periodic boundary condi-
tions, the potential field ��x ,s� is diagonal on a uniform

collocation grid in real space and the Laplacian operator is
diagonal in Fourier space �plane wave basis�. Accordingly,
the operator e−�s��x,s�/2 is applied as a multiplication in real
space, and e�s�2

is applied by a multiplication in Fourier
space. By this spectral collocation approach �39�, we can
take advantage of efficient transformations between real and
Fourier space enabled by the fast Fourier transform �FFT�
�45�.

For boundary conditions other than periodic and compu-
tational domains of arbitrary geometry, it may not be pos-
sible to efficiently apply the Rasmussen-Kalosakas PSS al-
gorithm. Fortunately, in the case of the spherical geometry of
fixed radius R studied here, the basis of spherical harmonics
also yields a diagonal Laplacian operator. For a two-
dimensional �2D� function defined on the sphere f�u�
= f�
 ,��, the spherical harmonic expansion is defined by

f�u� = �
l=0

�

�
m=−l

l

f̂ l
mYl

m�u� , �31�

where Yl
m�u� denotes the spherical harmonics,

Yl
m�u� =�2l + 1

4


�l − m�!
�l + m�!

Pl
m�cos ��eim
, �32�

and f̂ l
m are the components of f�u� in “spherical-harmonic

space” �henceforth called lm space�. In Eq. �32�, Pl
m�cos ��

are the associated Legendre functions �cf. �46��. We calculate

f̂ l
m by multiplying Eq. �31� by the complex conjugate of

Yl
m�u�, denoted Ȳl

m�u�, and integrating over all 
 and �. This
gives

f̂ l
m = �

S2
du f�u�Ȳl

m�u� , �33�

where we have used the orthogonality relationship for
spherical harmonics,

�
S2

du Yl
m�u�Ȳl�

m��u� = �ll��mm�. �34�

Here �ij is the Kronecker delta �cf. �46��.
We can calculate the Laplacian of f�u� via application of

the operator termwise in the expansion of Eq. �31�. This
gives

�2f�u� =
1

R2�u
2 f�u� = �

l=0

�

�
m=−l

l
− l�l + 1�

R2 f̂ l
mYl

m�u� . �35�

In other words, the 2D Laplacian is diagonal in lm space. We
can evaluate the 2D Laplacian of a function f�u� defined on
the surface of a sphere of radius R by first calculating the

coefficients of f in lm space f̂ l
m then multiplying f̂ l

m by

−l�l+1� /R2 for all l and m. The product −l�l+1� f̂ l
m /R2 cor-

responds to the components of �1/R2��u
2 f in lm space. We

can recover �1/R2��u
2 f by evaluating the sum in Eq. �35�.

Consequently, the Rasmussen-Kalosakas operator splitting
algorithm outlined above can also be applied to solve diffu-
sion equations on a sphere, the only difference being that we
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need an efficient method of transforming between grid points
on the sphere �i.e., u space� and lm space, as opposed to
conventional FFT transformations between real and Fourier
space. Fortunately, a software package, SPHEREPACK 3.1, is
available for performing fast efficient transformations be-
tween the values of a function f�u� sampled on a grid on the

unit sphere and its spherical harmonic coefficients f̂ l
m. The

application of this software, along with the relevant numeri-
cal methods, including our choice of discretization in u, s,
and t, is described in Appendix B.

D. Euler and semi-implicit Seidel algorithm

A simple algorithm for solving the relaxation equations in
Eqs. �27� and �28� is an explicit forward Euler update at the
intermediate step �denoted ��,

�* = �n + �t
�H��n,Wn�

��n , �36�

W* = Wn − �t
�H��n,Wn�

�Wn , �37�

followed by a uniform field shift,

�n+1 = �* −
1

4

�

S2
du �*, �38�

Wn+1 = W* −
1

4

�

S2
du W*, �39�

where the superscript n denotes discrete steps in the fictitious
time variable t �we have dropped explicit dependence on u
or, equivalently, i for simplicity�. More information on how
we discretize t and u can be found in Appendix B. We were
able to successfully implement this scheme, but the poor
stability of the algorithm considerably restricted the size of
the time step �t and hence its efficiency. Indeed, the forward
Euler algorithm’s slow convergence was problematic for
some of our high-resolution simulations.

To alleviate some of the problems associated with the
forward Euler method, we adapted a more stable algorithm
for our spherical system, which was proposed by Ceniceros
and Fredrickson �47� to solve the SCFT equations in flat
Euclidian space. The scheme uses a random phase approxi-
mation to expand the density operators to first order in � and
W. These two linear functionals of � or W, are then added
�at the future time step� and subtracted �at the present time
step� to the right-hand side of Eqs. �36� and �37� �see �36,47�
for a more in-depth discussion�. This semi-implicit Seidel
�SIS� algorithm, which has been successfully implemented in
flat space through the use of FFTs, is known to converge to a
SCFT solution of prescribed accuracy one or two orders of
magnitude faster in the number of fictitious time steps nt than
the forward Euler method. This is partially due to the en-
hanced stability of the SIS algorithm which allows a much
larger time step �t to be used. To implement this scheme in
our spherical geometry, some changes to the SIS equations
for the block copolymer system presented in �47� must be

made, but since the basic methods used in the spherical deri-
vation are similar to the flat space derivation in �47�, only the
final equations will be presented. For the block copolymer
system of interest, the SIS update for the pressure field � at
the intermediate step is

�* − �n

�t
= − �gAA + 2gAB + gBB� � �* +

�H��n,Wn�
��n

+ �gAA + 2gAB + gBB� � �n, �40�

and the update for the exchange field W at the intermediate
step is:

W* − Wn

�t
= −

2

�N
W* −

�H��*,Wn�
�Wn +

2

�N
Wn. �41�

The Debye scattering functions for the diblock system are
expressed in lm space �ĝAA , ĝAB , ĝBB� according to

ĝAA�k2� =
2

k4 �fk2 + e−k2f − 1� , �42a�

ĝAB�k2� =
1

k4 �1 − e−k2f��1 − e−k2�1−f�� , �42b�

ĝBB�k2� =
2

k4 ��1 − f�k2 + e−k2�1−f� − 1� , �42c�

where k is a “spherical wave vector” defined according to

k2 =
l�l + 1�

R2 . �43�

The convolutions appearing in Eq. �40� are evaluated in lm
space according to

g � � = �
l=0

�

�
m=−l

l

ĝ�k2��̂l
mYl

m�u� . �44�

After implementing Eqs. �40� and �41�, the fields are then
uniformly shifted to obtain their value at the next time step
using Eqs. �38� and �39�. The Debye scattering functions
defined above in lm space are identical to those derived in
Fourier space for the diblock copolymer �47�, but where the
Fourier wave vector is replaced by the spherical wave vector
defined in Eq. �43�.

III. RESULTS AND DISCUSSION

As mentioned in Sec. I, particle-based models have been
the prevailing way to study the ordering of particles and the
formation of defects on the surface of a sphere, but in these
types of studies the number of particles on the sphere are
fixed. Since block copolymers are self-assembling materials
that do not require a fixed number of microdomains to be
present on the sphere surface, it is possible that certain lattice
configurations are so energetically unfavorable that they are
completely avoided for all values of the sphere radius R. In
reference to the block copolymer cylindrical phase, “lattice”
refers to the characteristic array formed by the centers of
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mass of the cylindrical microdomains. With a well defined
lattice, we can use the above definitions of “coordination”
and “disclination.” Hoping to shed light on this question, we
use SCFT simulations to determine the mean-field free en-
ergy density for different distributions of microdomains.
Specifically, we monitor an energy density E defined by

E �
H��,W�
4
R2hC

. �45�

In Sec. III A we discuss the results of the SCFT simula-
tions of the BCP cylindrical phase on a sphere, specifically
the observed microdomain defect structures, packing ar-
rangements, and associated energetics. In Sec. III B we ex-
amine a SSL approximate free energy for the BCP cylindrical
phase on a sphere. This free energy, in addition to exhibiting
strong qualitative agreement with the SCFT simulations, pro-
vides insight into the driving forces behind the observed cy-
lindrical microdomain structures on the sphere.

In Sec. III C we discuss grain boundary scars, and we
summarize our SCFT simulations of the BCP cylindrical
phase for large sphere radii.

SCFT simulation results for the lamellar phase are pre-
sented in Sec. III D. In order to better understand this sys-
tem, we examine parallels with liquid crystal theory, and we
discuss commensurability effects in relation to lamellar
packing on the sphere �presented in Sec. III E�.

A. SCFT cylindrical phase results

We used SCFT to determine the number of cylindrical
phase microdomains that yields the lowest free energy den-
sity for a sphere radius of 3 to 4, with �N=25 and f =0.8.
Initially, several runs were performed starting from random
initial conditions, but this approach did not consistently gen-
erate the lowest-energy configuration for a given value of R.
This is because the SIS algorithm is also capable of relaxing
to metastable states �36�. In order to obtain insights into the
globally stable solution at each sphere radius, we instead
seeded our simulations with density profiles that consist of
10–17 cylindrical microdomains for the radii of interest. We
believe that these profiles, which were generated from our
SCFT simulations starting from random initial conditions
and that display the allocation of disclinations observed in
the classical Thomson problem �1� for particle-based models,
correspond to global minima. In Fig. 1 we present a repre-
sentative composition profile for the block copolymer cylin-
drical phase on a sphere—specifically, the case of 12 micro-
domains covering a sphere. We present more information
about the distribution of microdomains that were selected as
initial conditions in our SCFT simulations in Appendix C.

Using our SCFT model, we determined the number of
domains that correspond to the lowest free energy density for
a sphere radius between 3 and 4. In Fig. 2 we plot E vs R for
10–17 domains, where the energy density E is approximately
equal to the free energy density in the mean-field approxima-
tion �36�. From this graph we were able to determine the
number of microdomains that correspond to the ground-state
configuration for our range of radii. In Fig. 3 we show that as
the radius of the sphere is increased, the number of micro-

domains corresponding to the lowest-energy configuration
increases. Of particular interest is the lack of lowest-energy
stability regions corresponding to 11 and 13 microdomains.
We also note that the 12-microdomain configuration, illus-
trated in Fig. 1, has the lowest energy �is stable� for the
largest range of R, while the stability regions corresponding
to 10, 14, 15, and 16 microdomains are significantly nar-
rower.

Figure 3 also contains an “area estimate” prediction for
the number of microdomains covering a sphere. Here, the
approximate area for a hexagonal Wigner-Seitz cell �see �21�
for a definition of Wigner-Seitz cells� was obtained from a
fully relaxed, flat space unit cell simulation with the same
parameters as our block copolymer system. It was deter-

FIG. 1. �Color online� Representative composition profile
�bright �light� colors correspond to large A-segment fractions� for
the 12-microdomain, ground-state cylindrical phase on the sphere.
The key indicates how the coloring corresponds to A-segment frac-
tions. The 12 fivefold coordinated cylinders are located at the ver-
tices of a regular icosahedron. While the other cylinder phase con-
figurations have a very similar appearance, they have different
numbers of microdomains and a different unit cell structure.

FIG. 2. Graph of E vs R for 10–17 microdomains on a sphere.
Each data point is the result of a single SCFT simulation seeded
with an initial condition with the target number of microdomains.
There are regions where 10, 12, 14, 15, and 16 domains are the
lowest-energy configuration, while 11 and 13 microdomains are no-
where lowest in energy.
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mined through this approach, which does not capture the
effect of curvature, that a microdomain sixfold coordinated
unit cell occupies an area of approximately 10.6 in flat 2D
space. One can divide this approximate Wigner-Seitz cell
area into the total surface area 4
R2 of the sphere to obtain
an approximation for the number of expected block copoly-
mer microdomains that will cover a sphere of a given radius.
There is a striking disagreement between this approximation
for the number of microdomains and the observed lowest-
energy configurations from the SCFT simulations. The area
estimate calculations do not capture the effects of topological
constraints, nor the competition between interfacial energy
and chain stretching on a curved surface, so we view this
deficiency as the primary reason for the disagreement with
SCFT.

The cylindrical phase was further studied for larger sphere
radii, where we observed structures called grain boundary
scars. These results will be presented in Sec. III C.

B. Cylindrical phase and the strong segregation limit
approximation

To better understand the behavior observed in the SCFT
simulations of cylinder-forming AB diblock copolymers on a
sphere, specifically the lack of stable configurations exhibit-
ing 11 or 13 microdomains, we examine a SSL approxima-
tion for the free energy F of a thin-film AB diblock copoly-
mer system on a sphere.

This calculation is divided into two distinct parts. The first
part involves determining the relevant Wigner-Seitz cell con-
figuration for block copolymer microdomains covering a
sphere. The second part involves identifying the SSL free
energy of each unit cell and summing the SSL free energy
over all unit cells on the sphere. We discuss the derivation of

the SSL approximation as it applies to the spherical system
of interest in Appendix C.

In Sec. III B 1 we present the results of the SSL approxi-
mation.

1. SSL cylindrical phase results

In Fig. 4 we plot ESSL=F /4
R2 vs R for 10–16 micro-
domains on a sphere, where F is the total SSL approximate
free energy, Eq. �C13�, defined in Appendix C. This figure
was constructed using the unit cell configurations from Table
III below. It is notable that this graph is qualitatively very
similar to the E vs R graph for our SCFT simulations, Fig. 2.
Specifically, there is a small region where 10 microdomains
is the lowest-energy configuration, there is a large region
where 12 microdomains is the lowest-energy configuration,
the 13-microdomain configuration is nowhere lowest in en-
ergy, there is a large region where 14 microdomains is the
lowest-energy configuration, and the 15-microdomain con-
figuration only has a small region of stability. For 13 micro-
domains, the chain stretching penalty is apparently too great,
and both the 12- and 14-microdomain arrangements are
lower in energy than the 13-microdomain arrangement over
all radii of interest.

In spite of the excellent qualitative agreement, there are a
few noticeable differences between Figs. 2 and 4. First, the
scale for R in Fig. 4 is shifted by approximately a factor of
1.5 when compared to Fig. 2. Considering that our system is
not strictly in the SSL limit and the spherical SSL free energy
involves numerous approximations �specifically, the circular
unit cell approximation, the neglect of curvature effects, and
the equiareal triangulation—see Appendix C for the descrip-
tions of these approximations�, this discrepancy in the scale
of R is to be expected. Also, the SSL calculation predicts a
small window in R where the 11-microdomain configuration
is lowest in energy �specifically, from approximately R
=4.90 to 4.94�. The SCFT results do not show the existence

FIG. 3. Graph of number of microdomains vs R for the ground-
state �i.e., lowest-energy� configurations. The solid line represents
the results obtained through an “area estimate,” while the data
points represent data that were acquired from our SCFT simula-
tions. The SCFT simulations indicate that the ground-state configu-
ration contains 10 domains from R=3–3.16, 12 domains from R
=3.17–3.73, 14 domains from R=3.74–3.81, 15 domains from R
=3.82–3.84, and 16 domains from R=3.85–4.

FIG. 4. Graph of ESSL=F /4
R2 vs R �given by Eq. �C13�� for
10–16 microdomains on a sphere. The unit cell configuration used
to construct each curve was selected from the observed Wigner-
Seitz cell configurations in the SCFT simulations, summarized in
Table III �below�. Note the striking qualitative agreement with
Fig. 2.
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of such a region. Again, we believe this disagreement is a
consequence of the approximations inherent in the SSL
model.

Overall, the simple SSL model provides an illuminating
picture for how BCP microdomains cover a sphere. Of ut-
most importance is the effect that topological constraints
have on the interfacial and stretching energy of the BCP
melt. High-symmetry solutions �e.g., 12 and 14 micro-
domains� have low-energy unit cell configurations, and low-
symmetry solutions �e.g., 11, 13, and 15 microdomains� are
characterized by high-energy unit cells.

C. Grain boundary scars in the cylindrical phase

As the size of the sphere, and thus the number of micro-
domains, is increased, isolated fivefold disclinations become
more energetically costly due to the amount of strain they
produce. In order to reduce this elastic strain energy, the
system introduces dislocations �pairs of five- and sevenfold
disclinations�. Although some of these dislocations are iso-
lated, a majority of them produce high-angle �30°� curved
chains of dislocations called grain boundary scars �6�. These
grain boundaries, which have been observed to freely termi-
nate within the lattice, are known to consist of a chain of
three to five dislocations, as well as one extra fivefold discli-
nation; thus, in order to satisfy the required net disclination
charge of 12 �cf. Eq. �2��, there should be a total of 12 grain
boundaries on a sphere �6�. These scars, which have been
studied both experimentally on spherical crystals �formed by
self-assembled beads on water droplets in oil �6�� and theo-
retically through the Thomson problem �13–15�, have been
observed to appear when the ratio of the sphere radius R to
the mean particle spacing d is approximately greater than or
equal to five, or when the number of particles exceeds ap-
proximately 360 �7�.

To determine if our simulations are capable of exhibiting
grain boundary scars, a sphere of radius R=20.0, with f
=0.8 and �N=25.0, was simulated starting from random ini-
tial conditions. The final configuration consisted of 446 mi-
crodomains �69 fivefold, 350 sixfold, and 57 sevenfold coor-
dinated sites�, and, thus, it should exhibit some scarring. To
easily visualize these grain boundary scars, a Voronoi dia-
gram was also produced and is shown in Fig. 5. Although the
sphere does exhibit some scarring, the scars are not arranged
symmetrically around the sphere—which is known to be the
lowest-energy configuration �6�. This is not surprising since
large-cell SCFT simulations started from random initial con-
ditions are well known to produce defective metastable states
�36�. The number of metastable states increases rapidly with
the total number of domains �12�, so SCFT trajectories for
large spheres initiated from random initial conditions invari-
ably fail to generate the lowest-energy configuration. In the
future, we plan to report on the application of annealing tech-
niques to achieve ground state scar structures.

D. SCFT lamellar phase results

To study the lamellar block copolymer phase on the sur-
face of the sphere, we used SCFT to determine the morphol-
ogy that yielded the lowest free energy density for a sphere

radius of R=3.1–4.9 and R=10–11.8, with �N=12.5 and f
=0.5. The lamellar block copolymer phase is analogous to
the smectic-A phase of liquid crystals �19,48�. Accordingly,
we observe defect structures familiar from liquid crystal
theory, and we are compelled to make comparisons of our
results with liquid crystal systems.

Although the nematic liquid crystal phase constrained to
the surface of a sphere has been explored �e.g., see �24,25��,
studies of smectic ordering in this geometry have been quite
limited �22�. The defect configuration with two +1 defects,
one on each pole, has been observed �or discussed� in both
nematics and smectic-A liquid crystal systems �hedgehog�.
However, the configuration with four + 1

2 defects differs be-
tween the two systems. For a nematic liquid crystal, the + 1

2
defects are located on the vertices of a tetrahedron �baseball�
�24,25�, while for a smectic-A liquid crystal they all lie on a
great circle, each separated by 90° �quasibaseball� �22�. This
is due to the different elastic properties of the two systems. A
discussion of +1 and + 1

2 defect structures in liquid crystals
can be found in de Gennes and Prost �19�.

In Fig. 6 we summarize the defect structures that were
observed in our SCFT simulations of lamellar block copoly-
mers on a sphere. We observed both the hedgehog and qua-
sibaseball defect structures as described above. However, we
also observed a variant of the quasi-baseball where the four
+ 1

2 defects are located on a great circle, but are not separated
by 90° �spiral�. This defect state resembles a double spiral.
All three of these configurations were also recently identified
by Li et al. �32�.

The presence of these three defect configurations in our
SCFT simulations is not surprising. In fact, related states can
be systematically constructed from the simple hedgehog
state. If we cut the hedgehog sphere perfectly along a great
circle that intersects the two +1 defects, and then rotate one
of the hemispheres by an integer number of lamellar spac-
ings, we can construct a wide range of quasibaseball and
spiral defect structures. Clearly, transitions between the vari-
ous lamellar defect configurations will not proceed by such a
transformation, but this cut-and-rotate exercise is useful for
visualizing the defect structures.

FIG. 5. �Color online� Voronoi diagram for the cylindrical phase
on a sphere of radius R=20.0, with f =0.8 and �N=25.0. The sphere
consists of 446 microdomains �69 fivefold, 350 sixfold, and 57
sevenfold coordinated sites� and exhibits grain boundary scars.
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In our SCFT simulations, we observed an R-dependent
transition in lowest-energy configuration from a smectic-A
texture with two singular +1 defects �hedgehog� to a con-
figuration with four + 1

2 defects �spiral� and vice versa. To
facilitate a quantitative study of the energetics of competing
structures, three configurations were seeded into our simula-
tions, the quasibaseball, hedgehog, and spiral structures, in
the same manner as was done for the cylindrical phase. Al-
though the spiral and quasibaseball structures both have four
+ 1

2 defects, they differ in the number of continuous lamellae

stripes they contain on their surface and in the positioning of
those stripes. The spiral structure contains one continuous
lamellar stripe, while the quasibaseball structure contains
two or more stripes. Furthermore, on the quasibaseball, the
defects are equally spaced at 90° intervals on a great circle,
while on the spiral, the four defects are not necessarily
evenly spaced.

In Figs. 7 and 8, we show the free energy density versus
sphere radius determined from SCFT simulations of the com-
peting hedgehog, quasibaseball, and spiral phases. These
studies, which were conducted with parameters �N=12.5
and f =0.5, identify the ground-state configuration for two
intervals of sphere radii: R=3.1–4.9 and R=10–11.8. For
the interval R=3.1–4.9, the hedgehog is consistently the
lowest-energy configuration, except at R=3.88. For the inter-
val R=10–11.8, we observe an alternation in stability be-
tween the hedgehog and the spiral defect structures.

E. Analogy with smectic-A liquid crystals

1. Applicability of smectic-A models

As discussed in de Gennes and Prost �19�, the elastic en-
ergy density �per unit area� of the smectic-A phase can be
approximated in flat space as

fsmA =
1

2
B̄�2 +

1

2
K1�2, �46�

where B̄ and K1 are the dilation �compression� modulus and
mean curvature �bending� modulus, respectively, � is a strain
of dilation �compression�, and � is a bending strain. The

FIG. 7. E vs R for the lamellar phase on a sphere from SCFT
simulations for f =0.5 and �N=12.5. For the radius range of R
=3.1–4.9, the hedgehog structure was the observed lowest-energy
configuration except at R=3.88.

FIG. 6. �Color online� Three lamellar configu-
rations �density composition profiles where bright
�light� colors correspond to large A-seg-
ment fractions� that were obtained and studied
through our SCFT simulations. Again, the key in-
dicates how the coloring corresponds to A-seg-
ment densities. �a�, �d�, and �g� are flat 2D pro-
jections of the spiral, hedgehog, and quasibase-
ball phases, respectively. �b�, �e�, and �h� are the
spiral, hedgehog, and quasibaseball phases, re-
spectively, projected on the surface of a sphere.
�c�, �f�, and �i� are slices of the 2D spherical pro-
jections, which show that the defects of these
lamellae phases all lie on a great circle.
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ratio of the two moduli is often expressed as �2=K1 / B̄,
where � is a length scale that is comparable to the layer
thickness when the system is far from a phase transition. For
block copolymers, ��0.1d, where d is the lamellar repeat
spacing �48,49�.

For a confined smectic-A system, we expect a competition
between the bending and compression degrees of freedom
that is dependent on the confinement scale. Indeed, commen-
surability is less of a factor for large confinements. The char-
acteristic confinement length of a smectic-A system L sets
the order of magnitude of the lamellar bending �22�. For a
large confinement ��L, and compression effects are negli-

gible: ��� /R and B̄�2�K1�2 �22�.
For the spherical system of interest here, the natural con-

finement length is set by the sphere radius R. Therefore, we
expect layer compression, and consequently lamellar com-
mensurability, to play less of a role in selecting lowest-
energy configurations for large sphere radii. Furthermore, it
is reasonable to assume that commensurability effects play a
more important role in selecting lowest-energy configura-
tions for small sphere radii.

It is interesting to note that for R=3.1–4.9 the sphere
radius is comparable to the lamellar spacing, d. Elastic liquid
crystal theories have a short-length-scale cutoff, below which
elastic theory does not apply. This cutoff often corresponds
to the liquid crystal defect core radius, which, for a smectic-
A liquid crystal, is of order the layer repeat spacing. There-
fore, our spherical BCP lamellar system lies outside the ap-
plicable range of classic liquid crystal theory for small
sphere radii.

For the interval R=10–11.8, the sphere radius is still rela-
tively small, but likely inside the applicable range of elastic
liquid crystal theory. Therefore, according to the above argu-
ment, we expect the dilation-compression mode to play an
important role in determining the lowest-energy state. With
this in mind, the observed alternation between hedgehog and
spiral defects in Fig. 8 is not surprising.

For even larger sphere radii, perhaps of order R=100, we
expect dilation-compression effects to have less of a direct
effect and the alternation between ground states to be less
pronounced �and perhaps nonexistent�.

2. Quasibaseball and spiral defect configurations
as a Helfrich-Hurault transition

In order to understand the mechanism driving the
hedgehog-quasibaseball or spiral transitions for large sphere
radii, we can examine Eq. �46� and an approximate analytic
result. Comparing the two defect structures, we can see that
the hedgehog morphology exhibits minimal dilation �here we
use the term “dilation” to refer to dilation or compression, as
they represent the same degree of freedom� when the sphere
circumference is an integer multiple of the lamellar spacing,
while dilation can be large for intermediate values of sphere
circumference �i.e., not corresponding to an integer number
of lamellar spacings�. To compensate for the high dilation at
intermediate values of sphere radius, the quasibaseball or
spiral arrangement produces areas of curvature �bend� that,
in turn, relieve dilation, and thus lower the overall free en-
ergy.

To determine the approximate radii Rhn where the hedge-
hog structure is lowest in energy, we assume that the circum-
ference of the sphere is equal to an integer number of lamel-
lar periods nd:

Rhn =
nd

2

. �47�

When the radius of the sphere is increased or decreased from
these optimum values for the hedgehog morphology, there is
a large elastic energy contribution from lamellar compression
or dilation, and a Helfrich-Hurault transition occurs, where
the lamellar layers exhibit undulations to fill the extra space
produced by expanding the system �19�. We believe that the
spiral �and quasibaseball� structures are obtained through this
type of transition, where layer bending substitutes for layer
compression or dilation. The radius Rsn where the spiral �or
perhaps the quasibaseball� morphology is lowest in energy
can be roughly approximated by

Rsn =
	n +

1

2
�d

2

, �48�

where the extra term of + 1
2 represents the intermediate sphere

radii where the circumference is not a full integer multiple of
the lamellar repeat spacing. From this simple calculation, we
expect that there will be alternating regions where one defect
morphology will be lower in energy than the others.

To calculate the natural lamellae repeat spacing d, a fully
relaxed unit cell calculation in flat space was performed us-
ing the same system parameters �i.e., f =0.5 and �N=12.5�.
From this simulation we found that d�3.48. Using Eqs. �47�
and �48�, we can calculate the approximate radii where the
hedgehog structure and spiral �or quasibaseball� structure are
predicted to be lowest in energy. These results are summa-
rized in Table I. Note that the results in Table I approxi-
mately agree �at least qualitatively� with the behavior ob-

FIG. 8. E vs R for the lamellar phase on a sphere from SCFT
simulations for f =0.5 and �N=12.5. For the interval R=10–11.8
the hedgehog �R=10–10.54 and R=11.08–11.77� and spiral �R
=10.6–11.05 and R=11.8� configurations alternate as the ground
state.
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served in our SCFT simulations for large R, summarized in
Fig. 8 and Table II.

At small sphere radii, the above commensurability calcu-
lation fails to provide a qualitative explanation for the SCFT
results, although it does roughly correlate with the near-
stability of the spiral phase at R�3.3, 3.9, and 4.4. At larger
radii, 10	R	12, the commensurability argument becomes
semiquantitative and alternating regions of spiral and hedge-
hog stability are observed. For even larger spheres, we ex-
pect that the energetics of dilation-compression of the layers
will be less important and that the ground state morphology
will be dictated to a larger extent by layer bending forces.

3. Quasibaseball and spiral defect configurations

As mentioned above, the topological defect structure of
the quasibaseball and the spiral configurations are very simi-
lar. The primary difference is the observed location of the + 1

2
defects. For large R, we argued that the spiral configuration
relieves elastic compression-dilation frustration by introduc-
ing layer bending. However, the quasibaseball structure is an
alternate structure that substitutes lamellae bending for layer
compression-dilation. One possible explanation for the ob-
served stability of spiral relative to baseball structures in our
SCFT simulations is that for a given sphere radius, there are
only two possible quasibaseball structures, whereas the spiral
has many different manifestations. For example, the + 1

2 de-
fects on the spiral can be separated by 1 or more lamellae
stripes and the spiral can have varying degrees of “twist.”

Accordingly, it is reasonable to expect that the more “com-
pliant” spiral structure will have a lower energy than the
quasibaseball structure over a broader range of sphere radii.

F. The role of fluctuations

By using the mean-field �SCFT� approximation to sim-
plify our field-theoretic model, we ignore field fluctuations
that are otherwise present in the model and can play a role in
experimental systems. In flat space, two-dimensional sys-
tems and bulk block copolymers in three dimensions, field
fluctuations can have the effect of shifting phase boundaries
and stabilizing the disordered phase relative to the ordered
microphases �36�. In the context of the present work, fluc-
tuations could be especially important in determining the
relative stability of phases on the sphere when the mean-field
free energy densities of competing phases are close in mag-
nitude �see Figs. 2, 7, and 8�. We expect that lower symmetry
phases, e.g., spirals and baseballs, which possess easily ex-
citable undulation modes on the sphere, will be fluctuation-
stabilized relative to higher symmetry phases in such circum-
stances. In any event, the importance of fluctuations can be
controlled by the Ginzburg parameter C and strictly elimi-
nated in the limit C→� where mean-field theory becomes
exact. Experimentally this can be approached by working
with copolymer melts of very high molecular weight. Fluc-
tuation effects could also be theoretically explored in the
present model by conducting stochastic complex Langevin
simulations �36�, although such simulations would be con-
siderably more expensive than the SCFT calculations re-
ported here.

IV. CONCLUSIONS

We presented a spectral collocation scheme for develop-
ing numerical SCFT solutions of inhomogeneous polymers
confined to the surface of a sphere. We believe that our nu-
merical methods are the most accurate and efficient available
for the spherical geometry and represent a significant ad-
vance over previous finite difference and finite volume ap-
proaches. In application to a standard model of AB diblock
copolymer melts confined to a thin film on a sphere, we used
numerical SCFT to study defect structures that arise due to a
spherical geometry. Specifically, we determined ground-state
configurations for both the lamellar ��N=12.5, f =0.5� and
cylindrical ��N=25, f =0.8� phases.

For the cylindrical phase, we found that there was a deli-
cate competition between topological constraints and chain
stretching that selected the ground-state microdomain con-
figuration observed on the sphere. In the SCFT simulations,
configurations with 11 and 13 cylindrical microdomains were
never observed to be lowest in energy. We believe that the
topological constraints for such configurations resulted in
unit cell structures that contained excessive amounts of chain
stretching, and thus a high free energy relative to other mi-
crodomain configurations.

Although our model was also capable of producing grain
boundary scars for large sphere simulations of the cylindrical
phase, additional work will be required to investigate the

TABLE I. Values of Rhn and Rsn obtained from Eqs. �47� and
�48�, respectively. Only values of R in the interval of our SCFT
simulations �R=3.1–4.9 and R=10–11.8� are reported. Table II
provides similar data collected from the SCFT simulations.

n Rhn Rsn

6 3.32 3.60

7 3.87 4.15

8 4.43 4.71

18 10.25

19 10.52 10.80

20 11.07 11.35

21 11.63

TABLE II. Values of Rh and Rs obtained from the approximate
minima of the hedgehog and spiral E vs R curves, respectively, in
Figs. 7 and 8.

Rh Rs

3.62

4.20

4.78

10.30

10.90

11.40
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ground-state configuration. Because of the large sphere size
required to obtain scar structures and the high spatial resolu-
tion required for accurate free energy evaluation, it is com-
putationally difficult to apply SCFT in this context.

For the lamellar phase, we found that for small sphere
radii, the hedgehog defect configuration was almost always
lowest in energy. For larger sphere radii there was competi-
tion between the hedgehog and spiral defect configurations.
Quasibaseball configurations, with defect structures closely
related to the spiral, were found to be metastable, but close in
energy to the spiral, especially in regions of sphere radius
where the hedgehog was strongly disfavored.

To qualitatively explain the SCFT results, analytic ap-
proximations using microdomain packing arguments, elastic
liquid crystal models, and the BCP strong segregation limit
were also presented. While not as robust as SCFT, these
calculations provided useful insights into the driving forces
behind the observed BCP microdomain and defect structures
on the surface of a sphere.

In this study, we considered a diblock copolymer thin film
on the surface of a sphere, where the system is uniform but
thin in the radial direction. These conditions may be difficult
to realize experimentally, such as in colloids and nanopar-
ticles coated with a thin layer of block copolymer. Specifi-
cally, it might prove difficult to neutralize both inner and
outer surfaces of the layer, so that the block copolymer mi-
crophases “stand up” and are compositionally homogeneous
in the radial coordinate. The thinness constraint is less prob-
lematic, because as the radius of the sphere is increased into
the colloidal domain, it becomes more experimentally viable
to produce thin films satisfying the inequality R�h. For a
more detailed investigation of the ground state configuration
on small spheres, or under conditions where preferential wet-
ting occurs on the inner or outer surfaces of the copolymer
film, it may be necessary to abandon our 2D model and
invest in a full 3D SCFT calculation. We plan to conduct
future studies along these lines that will enable the design of
functional colloids and nanoparticles with copolymers ad-
sorbed, coated, or grafted on their surfaces.
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APPENDIX A: DERIVATION OF EQ. (2)
FROM THE EULER-POINCARÉ FORMULA

Consider a compact manifold M without boundary with
Euler-Poincaré characteristic �E. Further consider a covering
of M by polygons. The Euler-Poincaré characteristic of M
is defined as

�E = F − E + V , �A1�

where F, E, and V are the number of faces, edges, and ver-
tices in the covering, respectively. If we restrict our attention
to coverings where exactly c edges intersect at each vertex,
then we find

E =
c

2
V . �A2�

Therefore, Eq. �A1� becomes

�E = F +
2 − c

2
V . �A3�

Let Nz be the number of polygons in the covering with ex-
actly z sides. Then

F = �
z

Nz, �A4�

and

�
z

zNz = cV . �A5�

This last formula follows because each vertex is common to
exactly c polygons.

From Eqs. �A3�–�A5�, it follows that

2c

2 − c
�E =

2c

2 − c
F + cV =

2c

2 − c
�

z

Nz + �
z

zNz, �A6�

which can be simplified to obtain

�
z
	 2c

c − 2
− z�Nz =

2c

c − 2
�E. �A7�

With the assumption that exactly three edges intersect at
each vertex, c=3 and Eq. �A7� can be rewritten as

1

6�
z

�6 − z�Nz = �E, �A8�

which is identical to Eq. �2�.
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APPENDIX B: SPHEREPACK 3.1 AND NUMERICAL
METHODS

Although there are several choices of basis functions that
can be used for spectral collocation solutions on the sphere,
spherical harmonics are the most “ideal” due to their prop-
erties of completeness, orthogonality, exponential conver-
gence �for functions that are infinitely differentiable on the
sphere�, and equiareal resolution. The spherical harmonic ba-
sis also circumvents the “pole problem,” which is often en-
countered in algorithms that utilize a finite difference or fi-
nite element grid. Thus, with spherical harmonics, features
on the sphere are equally resolved independent of the loca-
tion of the poles. More information about the spherical har-
monics basis and the pole problem can be found in
�40,50,51�.

As mentioned above, spherical harmonics are also desir-
able because they are the eigenfunctions of the two-
dimensional Laplacian operator in spherical coordinates

�u
2Yl

m�u� = − l�l + 1�Yl
m�u� . �B1�

This property, which closely mimics the Fourier basis in flat
Euclidian space with periodic boundary conditions, makes it
possible to efficiently calculate the Laplacian in the modified
diffusion equations �e.g., Eq. �12�� through the method ex-
plained in Sec. II C.

In order to simulate the block copolymer system of inter-
est it is necessary to discretize the variables 
 and �. It
proves convenient to utilize a 2D equally spaced grid in co-
latitude and longitude to discretize our system. Specifically,
we define

�i =

i

N − 1
, i = 0, . . . ,N − 1,


 j =
2
j

M
, j = 0, . . . ,M − 1, �B2�

where N and M are the total number of grid points in the �
and 
 directions, respectively. We will use the symbol i to
refer to the ordered pair �i , j�. The chain contour variable s
and the fictitious time variable t are also sampled on discrete
intervals:

s� =
�

ns
, � = 0, . . . ,ns,

tn = n�t, n = 0, . . . ,nt, �B3�

where ns and nt are the number of contour steps on the poly-
mer backbone and the number of iterations that are utilized
to relax the SCFT equations, respectively. The choice of
SCFT time step �t depends on the method used to integrate
Eqs. �27� and �28�.

In order to easily transform between real and lm space, we
use a package of FORTRAN 77 subroutines, SPHEREPACK 3.1,
which were produced by John Adams and Paul N. Swarz-
trauber of the National Center for Atomospheric Research
�40�. Since our SCFT equations only involve real-valued sca-
lar functions, the real representation of the transforms that

this software library utilizes is ideal because it requires only
half the computation associated with the complex form rep-
resented in Eq. �31� �52�. The subroutines use the following
“triangular truncated” expression for the spherical harmonic
expansion, which allows us to approximate a smooth func-
tion f�u� to arbitary precision for some integer value of L
�40�:

f�u� � �
l=0

L

�
m=0

l

Pl
m����alm cos�m
� + blm sin�m
�� .

�B4�

Since spherical harmonics are a Fourier series in longitude,
the longitudinal grid points are most optimal when they are
evenly spaced, but this is not the case in the colatitude direc-
tion since a simple FFT cannot be used �50�. There are cur-
rently several methods that can be applied to calculate these
transforms using either an equally spaced or Gaussian grid in
colatitude �51�, and in order to account for this choice there
are two versions of each SPHEREPACK 3.1 subroutine. The
calculations reported in this paper were performed using the
version that applies an evenly spaced grid in both coordi-
nates, as described above. For the uniform colatitude grid,
SPHEREPACK 3.1 utilizes the method of Machenhauer and Da-
ley �40�, which is known to have the same high level of
accuracy as Gaussian quadrature. More details about the ac-
tual method can be found in �53�.

The main computational difficulty associated with the
spherical harmonic basis is the lack of a fast Legendre trans-
form. Since the basis is a Fourier series in longitude, FFT
algorithms can be used to efficiently calculate the Fourier
transforms in this one dimension. Significantly more compu-
tational time is spent performing the Legendre transform in
colatitude. The overall operation count for a transform or
inverse transform utilizing a triangular truncation with L2

spherical harmonics is O�L3 log2 L� operations �50�.

APPENDIX C: DERIVATION OF THE SSL FREE
ENERGY FOR THE CYLINDRICAL PHASE

IN A SPHERICAL THIN FILM

1. Approximate SSL free energy for the cylindrical phase

We begin with an approximate free energy of a Wigner-
Seitz cell valid in the strong segregation limit �i.e., �N�10�
�54,55�:

Fc = Fcore + Fcorona + Finterface, �C1�

where Fcore is the chain-stretching free energy of the cylin-
drical core of the circular unit cell, Fcorona is the chain-
stretching free energy of the corona of the circular unit cell,
and Finterface is the interfacial energy of the core-corona in-
terface �i.e., the B-A interface�. The circular Wigner-Seitz
cell approximation is utilized by replacing the actual Wigner-
Seitz corona boundary by a circle of radius Rc. The radius Rc
is selected by requiring that the circular unit cell have the
same total area as the actual Wigner-Seitz cell.

The details of this model can be found in the literature �cf.
�54,55��. Here we are primarily concerned with the func-
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tional form of each term. Specifically, from �55�,

Fcore =

2

96
	
hb2

6�0
�Rc

4, �C2�

Fcorona =
1

16
ln� 1

�1 − f��	
hb2

6�0
�Rc

4, �C3�

and

Finterface = 2�6�1 − f��N	
hb2

6�0
�Rc, �C4�

where Rc is in units of the unperturbed radius of gyration
Rg0. As before, h is the thickness of the BCP thin film, b is
the statistical segment length, �0=1/�0 is the average seg-
ment volume, N is the total number of segments per chain, f
is the fraction of A segments �we have assumed that f �0.5�,
and � is the A-B Flory interaction parameter. Combining
terms, we find that the free energy in Eq. �C1� can be ex-
pressed in the more compact form

Fc = CI	
hb2

6�0
�Rc + CS	
hb2

6�0
�Rc

4, �C5�

where the first term captures the energy associated with in-
terfacial tension, the second term captures the energy associ-
ated with chain stretching, and CI and CS are f- and �N-de-
pendent parameters.

Dividing both sides of Eq. �C5� by 
hb2 /6�0 yields a

dimensionless free energy F̃c,

F̃c = CIRc + CSRc
4, �C6�

where

CI = 2�6�1 − f��N �C7�

and

CS =

2

96
+

1

16
ln� 1

1 − f
� . �C8�

For the system of interest here, with f =0.8 and �N=25, CI
�10.9545 and CS�0.2034.

We need to determine the area of the Wigner-Seitz cell so
that we can calculate the corresponding circular unit cell ra-
dius Rc. Provided we know the type, number, and area of all
microdomain unit cells covering a sphere, we can generate
an approximate free energy of the block copolymer thin film
by summing up the SSL free energies for all unit cells.

This approximation does not explicitly address curvature.
Furthermore, our simulations with �N=25 are not strictly in
the strong segregation limit �56�. However, we believe that
the primary forces driving the observed spherical micro-
domain unit cell structures are a combination of stretching
energy, interfacial energy, and geometric packing �enforced
by topological constraints�. This rudimentary SSL model,
coupled with some simple geometric arguments, can capture
all three of these elements.

2. Wigner-Seitz cells and SSL free energy on a sphere

In order to apply the SSL free energy discussed above, we
need to determine the relevant Wigner-Seitz cell configura-
tions on the sphere. Furthermore, if we are interested in the
dependence of SSL free energy on the sphere radius R, then
we need to determine how the unit cell areas depend on R.
This will allow us to connect the circular unit cell radius Rc
to the sphere radius R.

Let SR represent a sphere of radius R and M represent the
total number of minority �B block� microdomains covering
SR. Figure 1 illustrates the example of 12 B domains cover-
ing a sphere. For a specific microdomain on SR, the number
of nearest-neighbor B domains is given by the number of
sides of the microdomain’s Wigner-Seitz cell. The total num-
ber of z-gon Wigner-Seitz cells on SR is denoted Nz �equiva-
lently, this is the number of z-fold coordinated micro-
domains�. A specific unit cell configuration of M
microdomains on SR is given by the set of all Nz; we denote
this set �Nz ��zNz=M� or �Nz�M for short. Note that the set
�Nz�M is not unique. However, for nondegenerate ground
states, only one set �Nz�M is physically relevant �for small M,
we expect the lowest-energy configuration is nondegenerate�,
but from a purely geometric and topological standpoint,
many different unit cell configurations are possible.

Perhaps the easiest way to identify the physically relevant
�Nz�M is to perform a Voronoi analysis on the density com-
position profiles output by our SCFT simulations, as a
Voronoi analysis provides the Wigner-Seitz cell structure
�see �57� for details about Voronoi analysis of BCP density
profiles�. For the cases of M =10,11, . . . ,16, Table III sum-
marizes the observed Wigner-Seitz cell structure obtained
from Voronoi analysis of the SCFT density profiles. These
are the same configurations used to seed the simulation re-
sults presented in Sec. III A. We note that the observed dis-
tribution of Voronoi cells for M microdomains on a sphere is
consistent with the known results of the M-particle Thomson
problem �i.e., the problem of finding the ground state of M
particles constrained to a sphere, interacting via the Coulomb
potential �1��.

We still need to calculate the unit cell areas in order to
apply Eq. �C6� to sum the SSL free energy over the sphere.

TABLE III. Relevant Wigner-Seitz cells for M =10,11, . . . ,16
microdomains on a sphere. This table reflects only a small fraction
of the geometrically allowed unit cells; however, these unit cell
configurations are consistent with ground-state SCFT configurations
of BCP on a sphere and with ground-state configurations of the
Thomson problem �1�.

M N4 N5 N6

10 2 8 0

11 2 8 1

12 0 12 0

13 1 10 2

14 0 12 2

15 0 12 3

16 0 12 4
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All relevant unit cell polygons �i.e., square, pentagon, and
hexagon� can be constructed from triangles: a square is made
up of four triangles, a pentagon is made up of five triangles,
and a hexagon is made up of six triangles. For a regular
n-gon, the area of the polygon is given by An=nATn, where
ATn is the area of each triangle. Figure 9 provides a sche-
matic of the relevant unit cells, and the appropriate decom-
position into component triangles. In general, the unit cells
will not always be regular polygons, and the triangles will
not all have the same area; in general, ATn�ATm, for n�m.
However, if we make two approximations, we can simplify
the calculation significantly.

When calculating the approximate areas of the Wigner-
Seitz cells, we make two assumptions.

�1� We assume that the sphere is covered with an equiar-
eal, triangular array, where the total number of triangles nT is
calculated using �Nz�M as follows:

nT = �
z

zNz. �C9�

The area of each triangle is given by

AT =
4
R2

nT
. �C10�

Recent work by Travesset �12� suggests that the general
problem of finding the lowest-energy state for a collection of

constrained particles �in this case, topologically constrained�
is equivalent to finding the particle distribution which is
nearest to a perfect, equilateral triangulation. Accordingly,
our approximate triangulation seems reasonable.

�2� We assume the area of an z-gon Wigner-Seitz cell is
given by

Az = zAT.

Note that AT, and thus Az, is a function of the sphere ra-
dius R.

While this method yields only approximate unit cell areas,
it is reasonably consistent with published results relating the
relative sizes of BCP Wigner-Seitz cells. From above, we see
that A5 /A6=5/6�0.83 and A7 /A6=7/6�1.17. Hammond et
al. report that A5 /A6 is between 0.80 and 0.90, and A7 /A6 is
between 1.13 and 1.20, depending on the method used to
calculate the unit cell area �58�. We note that while the SSL
unit cell energies are evaluated in flat space, the equiareal,
equilateral triangulation does account for the topological
constraints of the sphere.

We are now in a position to calculate an approximate SSL
free energy of a thin film of microphase separated cylinders
covering a sphere of radius R. For a given configuration
�Nz�M, we can use the above two assumptions to calculate the
areas of all Wigner-Seitz cells on the sphere. This, in turn,
allows us to estimate the SSL free energy. This procedure is
outlined as follows.

�1� Given the Wigner-Seitz cell structure �Nz�M on SR,
calculate nT using Eq. �C9� and AT by means of Eq. �C10�.

�2� For all relevant coordination numbers z, calculate the
circular Wigner-Seitz cell radius Rcz:

Rcz =�zAT



. �C11�

This gives the radius of the circular Wigner-Seitz cell in
terms of the sphere radius.

�3� For all relevant coordination numbers z, calculate the

SSL approximate free energy F̃cz:

F̃cz�R� = F̃c�Rcz� . �C12�

�4� The total SSL approximate free energy over the sphere
is given by

F�R,�Nz�M� = �
z

NzF̃cz�R� . �C13�

For the purpose of comparing to the SCFT simulations re-
sults, we elect to plot the free energy density ESSL
�F /4
R2 in Fig. 4.

In Sec. III B 1 we used Eq. �C13� to evaluate the SSL
free energy for the unit cell configurations summarized in
Table III.

FIG. 9. Schematics of �a� approximate circular, �b� square, �c�
pentagon, and �d� hexagon Wigner-Seitz cells. Note that for each of
the polygon unit cells, the component triangles have been drawn.
Our approximation assumes that the area of all triangles, in all unit
cells covering the sphere, is given by AT �see Eq. �C10��; thus, the
area of an n-gon unit cell is approximated by An=nAT. The radius
of the approximate circular unit cell Rc is determined by requiring
that circular unit cell area 
Rc

2 is equal to the area of the actual
Wigner-Seitz cell, or in our case, the approximate n-gon unit cell
area, An.
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